Senin, 11 April 2011

Yuri Gargarin

Yuri Gagarin
Yuri Gagarin
Credits - NASA
“Man Enters Space” headline
Credits - NASA

Colonel Yuri A. Gagarin, popularly called “The Columbus of the Cosmos,” was born on a collective farm in a region west of Moscow, Russia, on March 9, 1934. His father was a carpenter. Yuri attended the local school for six years and continued his education at vocational and technical schools.

Yuri Gagarin joined the Russian Air Force in 1955 and graduated with honors from the Soviet Air Force Academy in 1957. Soon afterward, he became a military fighter pilot. By 1959, he had been selected for cosmonaut training as part of the first group of USSR cosmonauts.

Yuri Gagarin flew only one space mission. On April 12, 1961 he became the first human to orbit Earth. Gagarin's spacecraft, Vostok 1, circled Earth at a speed of 27,400 kilometers per hour. The flight lasted 108 minutes. At its highest point, Gagarin was about 200 miles (327 kilometers) above Earth.

Once in orbit, Yuri Gagarin had no control over his spacecraft. Vostok's reentry was controlled by a computer program sending radio commands to the space capsule. Although the controls were locked, a key had been placed in a sealed envelope in case an emergency situation made it necessary for Gagarin to take control. As was planned, Cosmonaut Gagarin ejected after reentry into Earth's atmosphere at an altitude of 20,000 feet and landed by parachute. As pilot of the spaceship Vostok 1, he proved that man could endure the rigors of lift-off, re-entry, and weightlessness.

As a result of his historic flight he became an international hero and legend. Colonel Gagarin died on March 27, 1968 when the MiG-15 airplane he was piloting crashed near Moscow. He was given a hero's funeral, his ashes interred in the Kremlin Wall. At the time of his death, he was in training for a second space mission.

Yuri Gagarin: First Man in Space

Yuri Gagarin becomes the first man in space on April 12, 1961 
April 12 was already a huge day in space history twenty years before the launch of the first shuttle mission. On that day in 1961, Russian cosmonaut Yuri Gagarin (left, on the way to the launch pad) became the first human in space, making a 108-minute orbital flight in his Vostok 1 spacecraft. Newspapers like The Huntsville Times (right) trumpeted Gagarin's accomplishment.

Mercury astronaut Alan Shepard became the first American in space less than a month later.

Scientific cooperation with the Soviet Union dates back to the very beginnings of space flight. The first cooperative human space flight project between the United States and the Soviet Union took place in 1975. The Apollo-Soyuz Test Project was designed to test the compatibility of rendezvous and docking systems for American and Soviet spacecraft and to open the way for future joint manned flights.

Since 1993, the U.S. and Russia have worked together on a number of other space flight projects. The Space Shuttle began visiting the Russian Mir space station in 1994, and in 1995 Norm Thagard became the first U.S. astronaut to take up residency on Mir. Seven U.S. astronauts served with their Russian counterparts aboard the orbiting Mir laboratory from 1995 to 1998. The experience gained from the Mir cooperative effort, as well as lessons learned, paved the way for the International Space Station.

In-orbit construction on the Station began in November 1998, and it has been staffed non-stop with international crews since November 2000. The first Station crew, made up of U.S. commander Bill Shepherd and cosmonauts Yuri Gidzenko and Sergei Krikalev, was launched on board a Russian Soyuz spacecraft. The crew returned to Earth on the Space Shuttle Discovery in March 2001.

49 Tahun Setelah Yuri Gagarin Mengangkasa

Tonggak sejarah perjalanan manusia ke ruang angkasa diawali pada 12 April 1961.

Kosmonot Uni Soviet, Yuri Gagarin, yang saat itu baru berusia 27 tahun, mencatatkan diri sebagai manusia pertama yang terbang ke luar angkasa.

Dengan pesawat luar angkasa Vostok 1, Yuri Gagarin berada di orbit Bumi selama 108 menit. Sebuah perjalanan yang mengubah sejarah manusia. Prestasi inilah yang kemudian membuat Presiden AS JF Kenedy, terobsesi untuk mendaratkan astronot AS di Bulan.

Namun, Yuri Gagarin tak lama menikmati status tenarnya sebagai manusia pertama di luar angkasa. Gagarin meninggal pada tanggal 27 Maret 1968, ketika pesawat MiG-15 yang dia piloti jatuh di dekat Moskow.

Kini, 49 tahun perjalanan Yuri Gagarin menembus langit bukan hanya diaku sebagai bagian sejarah Uni Soviet yang telah pecah, namun sejarah dunia.

Pada 12 April 2010, perayaan memperingati jejak sejarah Yuri Gagarin tak hanya dilangsungkan di berbagai negara di dunia, dari New York , Washington DC, Los Angeles, London, Tokyo, Moskow, Sydney, Beijing, Delhi, hingga Nairobi.

"Hari Yuri Gagarin' bahkan diperingati di luar angkasa.
Presiden Rusia Dmitry Medvedev meminta para penghuni Stasiun Antariksa Internasional yang terdiri dari tiga kosmonot Rusia, dua astronot Amerika dan satu astronot Jepang memperingati dua tonggak penting dalam perjalanan ruang angkasa.
Selain mengingat perjalanan Yuri Gagarin, di hari yang sama, juga diperingati 29 tahun peluncuran pesawat ulang alik pertama.
"Ruang angkasa adalah sesuatu yang menyatukan kita semua. Ini adalah isu global, " kata Medvedev pada para astronot dan kosmonot, seperti dimuat laman The Globe and Mail.

Tiga hari kemudian, Presiden Amerika Serikat, Barack Obama menyuarakan mimpi fantastis misi luar angkasa Amerika Serikat.

Sama dengan langkah John F Kennedy pada 1961 yang bercita-cita mengirim astronot ke Bulan -- yang berhasil diwujudkan pada 1969, Obama ingin membuat terobosan baru.

Pada 2025, AS akan memiliki pesawat luar angkasa baru yang dirancang untuk perjalanan jarak jauh.

Juga, misi luar angkasa yang melampaui Bulan -- ada orang-orang terpilih yang akan menjelajah belantara ruang angkasa.

"Kita akan memulai dengan mengirim astronot ke asteroid untuk kali pertamanya dalam sejarah," kata Obama, seperti dimuat laman Daily News, Jumat 16 April 2010.

"Pertengahan tahun 2030-an, saya yakin kita akan bisa mengirim manusia ke orbit Mars dan mengembalikan mereka dengan selamat ke Bumi," kata Obama.

"Selanjutnya, kita akan mengirim manusia pertama yang akan menginjakkan kaki di Mars. Saya harap ada di sana untuk menyaksikannya," kata Obama, optimistis.

Jumat, 08 April 2011

WISE Up: Space Photos from NASA's Sky-Mapping Telescope

Hidden Galaxy Photographed by Peeping Space Telescope
Hidden Galaxy Photographed by Peeping Space TelescopeCredit: NASA/JPL-Caltech/UCLAA leggy cosmic creature, actually the "hiding galaxy" IC 342, comes out of hiding in this new infrared view from NASA's Wide-field Infrared Survey Explorer, or WISE.

Meet Mimas: Saturn's Death Star Moon


The Expanding Universe: From the Big Bang to Today

The universe was born with the Big Bang as an unimaginably hot, dense point. When the universe was just 10-34 of a second or so old — that is, a hundredth of a billionth of a trillionth of a trillionth of a second in age — it experienced an incredible burst of expansion known as inflation, in which space itself expanded faster than the speed of light. During this period, the universe doubled in size at least 90 times, going from subatomic-sized to golf-ball-sized almost instantaneously.
After inflation, the growth of the universe continued, but at a slower rate. As space expanded, the universe cooled and matter formed. One second after the Big Bang, the universe was filled with neutrons, protons, electrons, anti-electrons, photons and neutrinos.
During the first three minutes of the universe, the light elements were born during a process known as Big Bang nucleosynthesis. Temperatures cooled from 10^32 degrees K to 10^9 degrees K, and protons and neutrons collided to make deuterium, an isotope of hydrogen. Most of the deuterium combined to make helium, and trace amounts of lithium were also generated.
For the first 380,000 years or so, the universe was essentially too hot for light to shine. The heat of creation smashed atoms together with enough force to break them up into a dense plasma, an opaque soup of protons, neutrons and electrons that scattered light like fog.
The globular cluster NGC 6397 contains around 400,000 stars and is located about 7,200 light years away in the southern constellation Ara. With an estimated age of 13.5 billion years, it is likely among the first objects of the Galaxy to form after the Bi

Roughly 380,000 years after the Big Bang, matter cooled enough for atoms to form during the era of recombination, resulting in a transparent, electrically neutral gas. This set loose the initial flash of light created during the Big Bang, which is detectable today as cosmic microwave background radiation. However, after this point, the universe was plunged into darkness, since no stars or any other bright objects had formed yet.
About 400 million years after the Big Bang, the universe began to emerge from the cosmic dark ages during the epoch of reionization. During this time, which lasted more than a half-billion years, clumps of gas collapsed enough to form the first stars and galaxies, whose energetic ultraviolet light ionized and destroyed most of the neutral hydrogen.
Although the expansion of the universe gradually slowed down as the matter in the universe pulled on itself via gravity, about 5 or 6 billion years after the Big Bang, a mysterious force now called dark energy began speeding up the expansion of the universe again, a phenomenon that continues today.
A little after 9 billion years after the Big Bang, our solar system was born.
The Big Bang
The Big Bang did not occur as an explosion in the usual way one think about such things, despite one might gather from its name. The universe did not expand into space, as space did not exist before the universe. Instead, it is better to think of the Big Bang as the simultaneous appearance of space everywhere in the universe. The universe has not expanded from any one spot since the Big Bang — rather, space itself has been stretching, and carrying matter with it.
Since the universe by its definition encompasses all of space and time as we know it, it is beyond the model of the Big Bang to say what the universe is expanding into or what gave rise to the Big Bang. Although there are models that speculate about these questions, none of them have made realistically testable predictions as of yet.
The universe is currently estimated at roughly 13.7 billion years old, give or take 130 million years. In comparison, the solar system is only about 4.6 billion years old.
This estimate came from measuring the composition of matter and energy density in the universe. This allowed researchers to compute how fast the universe expanded in the past.  With that knowledge, they could turn the clock back and extrapolate when the Big Bang happened. The time between then and now is the age of the universe.
Scientists think that in the earliest moments of the universe, there was no structure to it to speak of, with matter and energy distributed nearly uniformly throughout. The gravitational pull of small fluctuations in the density of matter back then gave rise to the vast web-like structure of stars and emptiness seen today. Dense regions pulled in more and more matter through gravity, and the more massive they became, the more matter they could pull in through gravity, forming stars, galaxies and larger structures known as clusters, superclusters, filaments and walls, with "great walls" of thousands of galaxies reaching more than a billion light years in length. Less dense regions did not grow, evolving into area of seemingly empty space called voids.
Until about 30 years ago, astronomers thought that the universe was composed almost entirely of ordinary atoms, or "baryonic matter." However, recently there has been ever more evidence that suggests most of the ingredients making up the universe come in forms that we can not see.
It turns out that atoms only make up 4.6 percent of the universe. Of the remainder, 23 percent is made up of dark matter, which is likely composed of one or more species of subatomic particles that interact very weakly with ordinary matter, and 72 percent is made of dark energy, which apparently is driving the accelerating expansion of the universe.
When it comes to the atoms we are familiar with, hydrogen makes up about 75 percent, while helium makes up about 25 percent, with heavier elements making up only a tiny fraction of the universe's atoms.
The shape of the universe and whether or not it is finite or infinite in extent depends on the struggle between the rate of its expansion and the pull of gravity. The strength of the pull in question depends in part on the density of the matter in the universe.
If the density of the universe exceeds a specific critical value, then the universe is "closed" and "positive curved" like the surface of a sphere. This means light beams that are initially parallel will converge slowly, eventually cross and return back to their starting point, if the universe lasts long enough. If so, the universe is not infinite but has no end, just as the area on the surface of a sphere is not infinite but has no beginning nor end to speak of. The universe will eventually stop expanding and start collapsing in on itself, the so-called "Big Crunch."
If the density of the universe is less than this critical density, then the geometry of space is "open" and "negatively curved" like the surface of a saddle. If so, the universe has no bounds, and will expand forever.
If the density of the universe exactly equals the critical density, then the geometry of the universe is "flat" with zero curvature like a sheet of paper. If so, the universe has no bounds and will expand forever, but the rate of expansion will gradually approach zero after an infinite amount of time. Recent measurements suggest that the universe is flat with only a 2 percent margin of error.
It is possible that the universe has a more complicated shape overall while seeming to possess a different curvature. For instance, the universe could have the shape of a torus, or doughnut.
Expanding Universe
In the 1920s, astronomer Edwin Hubble discovered the universe was not static. Rather, it was expanding, a find that revealed the universe was apparently born in a Big Bang.
After that, it was long thought the gravity of matter in the universe was certain to slow the expansion of the universe. Then, in 1998, the Hubble Space Telescope's observations of very distant supernovae revealed that a long time ago, the universe was expanding more slowly than it is today. In other words, the expansion of the universe was not slowing due to gravity, but instead inexplicably was accelerating. The name for the unknown force driving this accelerating expansion is dark energy, and it remains one of the greatest mysteries in science.

Comets: Formation, Discovery and Exploration

A comet is an icy body that releases gas or dust. They are often compared to dirty snowballs. Some researchers think comets might have originally brought some of the water and organic molecules to Earth that now make up life here.
The solid nucleus or core of a comet consists mostly of ice and dust coated with dark organic material, with the ice composed mainly of frozen water but perhaps other frozen substances as well, such as ammonia, carbon dioxide, carbon monoxide and methane. The nucleus might have a small rocky core.
As a comet gets closer to the sun, the ice on the surface of the nucleus begins turning into gas, forming a cloud known as the coma. Radiation from the sun pushes dust particles away from the coma, forming a dust tail, while charged particles from the sun convert some of the comet's gases into ions, forming an ion tail. Since comet tails are shaped by sunlight and the solar wind, they always point away from the sun.
The nuclei of most comets are thought to measure 10 miles (16 km) or less. Some comets have comas that can reach nearly 1 million miles (1.6 million kilometers) wide, and some have tails reaching 100 million miles (160 million kilometers) long.
We can see a number of comets with the naked eye when they pass close to the sun because their comas and tails reflect sunlight or even glow because of energy they absorb from the sun. However, most comets are too small or too faint to be seen without a telescope.
Comets leave a trail of debris behind them that can lead to meteor showers on Earth. For instance, the Perseid meteor shower occurs every year between August 9 and 13 when the Earth passes through the orbit of the Swift-Tuttle comet.
Orbital Characteristics
Asteroids classify comets based on the durations of their orbits around the sun. Short-period comets need roughly 200 years or less to complete one orbit, long-period comets take more than 200 years, and single-apparition comets are not bound to the sun, on orbits that take them out of the solar system. Recently, scientist have also discovered comets in the main asteroid belt — these main-belt comets might be a key source of water for the inner terrestrial planets.
Scientists think short-period comets, also known as periodic comets, originate from a disk-shaped band of icy objects known as the Kuiper belt beyond Neptune's orbit, with gravitational interactions with the outer planets dragging these bodies inward, where they become active comets. Long-period comets are thought to come from the nearly spherical Oort cloud even further out, which get slung inward by the gravitational pull of passing stars.
Some comets, called sun-grazers, smash right into the sun or get so close that they break up and evaporate.
In general, comets are named after their discoverer, either a person. For example, comet Shoemaker-Levy 9 got its name because it was the ninth short-periodic comet discovered by Eugene and Carolyn Shoemaker and David Levy. Spacecraft have proven very effective at spotting comets as well, so the names of many comets incorporate the names of missions such as SOHO or WISE.
Comet McNaught C/2009 R1 was visible on June 6, 2010.

Astronomers think comets are leftovers from the gas, dust, ice and rocks that initially formed the solar system about 4.6 billion years ago.
Comet Life Cycle
  • Departure
Some comets are not bound to the sun, on orbits that take them out of the solar system.
  • Extinction
Comets lose ice and dust each time they come near the sun, leaving behind trails of debris. Eventually, they can lose all their ices, with some turning into fragile, inactive objects similar to asteroids.
  • Breakup
Other comets, upon losing all their ices, break up and dissipate into clouds of dust.
  • Collisions
The orbits comets take sometimes end with them colliding with planets and their moons. Many impact craters seen in the solar system were caused by such collisions.
In antiquity, comets inspired both awe and alarm, "hairy stars" resembling fiery swords that appeared unpredictably in the sky. Often, comets seemed to be omens of doom — the most ancient known mythology, the Babylonian "Epic of Gilgamesh," described fire, brimstone, and flood with the arrival of a comet, and Emperor Nero of Rome saved himself from the "curse of the comet" by having all possible successors to his throne executed. This fear was not just limited to the distant past — in 1910, people in Chicago sealed their windows to protect themselves from what they thought was the comet’s poisonous tail.
For centuries, scientists thought comets traveled in the Earth's atmosphere, but in 1577, observations made by Danish astronomer Tycho Brahe revealed they actually traveled far beyond the moon. Isaac Newton later discovered that comets move in elliptical, oval-shaped orbits around the Sun, and correctly predicted that they could return again and again.
Chinese astronomers kept extensive records on comets for centuries, including observations of Halley's Comet going back to at least 240 BC, historic annals that have proven valuable resources for later astronomers.
A number of recent missions have ventured to comets. NASA's Deep Impact collided an impactor into Comet Tempel 1 in 2005 and recorded the dramatic explosion that revealed the interior composition and structure of the nucleus. In 2009, NASA announced samples the Stardust mission returned from Comet Wild 2 revealed a building block of life. The European Space Agency's Rosetta is scheduled to orbit Comet Churyumov-Gerasimenko in 2014 and deploy a probe to make the first landing on a comet.
Famous Comets
Halley's Comet is likely the most famous comet in the world, even depicted in the Bayeux Tapestry that chronicled the Battle of Hastings of 1066. It becomes visible to the naked eye every 76 years when it nears the sun. When Halley's Comet zoomed near Earth in 1986, five spacecraft flew past it and gathered unprecedented details, coming close enough to study its  nucleus, which is normally concealed by the comet's coma. The roughly potato-shaped, nine-mile-long (15 km) contains equal part ice and dust, with some 80 percent of the ice made of water and about 15 percent of it consisting of frozen carbon monoxide. Researchers believe other comets are chemically similar to Halley's Comet. The nucleus of Halley's Comet was unexpectedly extremely dark black — its surface, and perhaps those of most others, is apparently covered with a black crust of dust over most of the ice, and it only releases gas when holes in this crust expose ice to the sun.
The comet Shoemaker-Levy 9 collided spectacularly with Jupiter in 1994, with the giant planet's gravitational pull ripping the comet apart for at least 21 visible impacts. The largest collision created a fireball that rose about 1,800 miles (3,000 km) above the Jovian cloudtops as well as a giant dark spot more than 7,460 miles (12,000 km) across — about the size of the Earth —and was estimated to have exploded with the force of 6,000 gigatons of TNT.
A recent, highly visible comet was Hale-Bopp, which came within 122 million miles (197 million kilometers) of Earth in 1997. Its unusually large nucleus gave off a great deal of dust and gas — estimated at roughly 18 to 25 miles (30 to 40 kilometers) across — appeared bright to the naked eye.

Our Solar System: Facts, Formation and Discovery

At the heart of the solar system is our sun. The four planets nearest it are rocky, terrestrial worlds — Mercury, Venus, Earth and Mars. After that are four gas giants — Jupiter, Saturn, Uranus and Neptune. Between the orbits of Mars and Jupiter lies the asteroid belt, which includes the dwarf planet Ceres. Beyond the orbit of Neptune one finds the disk-shaped Kuiper belt, in which dwarf planet Pluto resides, and far beyond that is the giant, spherical Oort Cloud and the teardrop-shaped heliopause.
For millennia, astronomers have followed points of light that seemed to move among the stars. The ancient Greeks named these planets, meaning wanderers. Mercury, Venus, Mars, Jupiter and Saturn were known in antiquity, and the invention of the telescope added the asteroid belt, Uranus and Neptune, Pluto and many of these worlds' moons. The dawn of the space age saw dozens of probes launched to explore our system, an adventure that continues today. The discovery of Eris kicked off a rash of new discoveries of dwarf planets, and more than 100 could remain to be found.
This artist's conception shows the relative size of a hypothetical brown dwarf-planetary system -- assuming planets someday form around OTS 44 -- compared to our own solar system (top).

The sun is by far the largest object in our solar system, containing 99.8 percent of the solar system's mass. It sheds most of the heat and light that makes life possible on Earth and possibly elsewhere. Planets orbit the sun in oval-shaped paths called ellipses, and the sun is slightly off to the side of the center of each ellipse.
Inner Solar System
  • Inner Planets
The inner four planets — Mercury, Venus, Earth and Mars — are made up mostly of iron and rock. They are known as terrestrial or earthlike planets because of their similar size and composition.
  • Asteroid belt
Asteroids are minor planets, most of which circle the sun in a region known as the asteroid belt, between the orbits of Mars and Jupiter. Scientists estimate that there are more than 750,000 asteroids in the belt with diameters larger than three-fifths of a mile (1 kilometer), and there are millions of smaller asteroids. A number have orbits that take them closer into the solar system that sometimes lead them to collide with Earth or the other inner planets.
Outer Solar System
  • Outer Planets
The outer planets are giant worlds with thick outer layers of gas. Nearly all their mass is made up of  hydrogen and helium, giving them compositions like that of the sun. Beneath these outer layers, they have no solid surfaces — the pressure from their thick atmospheres liquefy their insides, although they might have rocky cores. Rings of dust, rock, and ice encircle all these giants, with Saturn's being the most famous.
  • Comets
Comets are often known as dirty snowballs, and consist mainly of ice and rock. When a comet's orbit takes it close to the sun, some of the ice in its central nucleus turns into gas that shoots out of the comet's sunlit side, which the solar wind carries outward to form into a long tail. Short-period comets that complete their orbits in less than 200 years are thought to originate from the the disk-shaped Kuiper belt, while long-period comets that take more than 200 years to return are thought to come from the spherical Oort cloud.
Many scientists think our solar system formed from a giant, rotating cloud of gas and dust known as the solar nebula. As the nebula collapsed because of its gravity, it spun faster and flattened into a disk. Most of the material was pulled toward the center to form the sun. Other particles within the disk collided and stuck together to form asteroid-sized objects named as planetesimals, some of which combined to become the asteroids, comets, moons and planets. The solar wind from the sun was so powerful that it swept away most of the lighter elements, such as hydrogen and helium, from the innermost planets, leaving behind mostly small, rocky worlds. The solar wind was much weaker in the outer regions, however, resulting in gas giants made up mostly of hydrogen and helium.
Trans-Neptunian Region
Astronomers had long suspected that a band of icy material known as the Kuiper belt existed past the orbit of Neptune extending from about 30 to 55 times the distance of Earth to the sun, and from the last decade of the 20th century up to now, they have found more than a thousand of such objects. Scientists estimate the Kuiper belt is likely home to hundreds of thousands of icy bodies larger than 60 miles (100 km) wide, as well as an estimated trillion or more comets.
Well past the Kuiper belt is the Oort cloud, which theoretically extends from 5,000 to 100,000 times the distance of Earth to the sun, and is home to up to two trillion icy bodies. Past that is the very edge of the solar system, the heliosphere, a vast, teardrop-shaped region of space containing electrically charged particles given off by the sun. Many astronomers think that the limit of the heliosphere, known as the heliopause, is about 9 billion miles (15 billion kilometers) from the sun.
Pluto is now considered a dwarf planet dwelling in the Kuiper belt. It is not alone — recent additions include Makemake, Haumea and Eris. Another object dubbed Sedna, which is about three-fourths the size of Pluto, might be the first dwarf planet discovered in the Oort cloud.

Reference: Stars: Formation, Classification and Constellations

Astronomy, the study of the heavens, may be the most ancient of the sciences, present since the dawn of recorded civilization, with the stars often playing a key role in religion and proving vital to navigation. The invention of the telescope and the discovery of the laws of motion and gravity in the 17th century prompted the realization that stars were just like the sun, all obeying the same laws of physics. In the 19th century, photography and spectroscopy — the study of the wavelengths of light that objects emit — made it possible to investigate the compositions and motions of stars from afar, leading to the development of astrophysics. In 1937, the first radio telescope was built, enabling astronomers to detect otherwise invisible radiation from stars. In 1990, the first space-based optical telescope, the Hubble Space Telescope, was launched, providing the deepest, most detailed visible-light view of the universe.
Star Naming Designations
Ancient cultures saw patterns in the heavens that resembled people, animals or common objects — constellations that came to represent figures from myth, such as Orion the Hunter, a hero in Greek mythology. Astronomers now often use constellations in the naming of stars, with the International Astronomical Union, the world authority for assigning names to celestial objects, officially recognizing 88 constellations that cover the entire sky. Usually, the brightest star in a constellation is has "alpha," the first letter of the Greek alphabet, as part of its scientific name. The second brightest star in a constellation is typically designated "beta," the third brightest "gamma," and so on until all the Greek letters are used, after which numerical designations follow.
Since there are so many stars in the universe, the IAU uses a different system for newfound stars. Most consist of an abbreviation that stands for either the type of star or a catalog that lists information about the star, followed by a group of symbols. For instance, PSR J1302-6350 is a pulsar, thus the PSR. The J reveals that a coordinate system known as J2000 is being used, while the 1302 and 6350 are coordinates similar to the latitude and longitude codes used on Earth.
A number of stars have possessed names since antiquity — Aldebaran, for instance, means "the follower" in Arabic, as it seems to follow the Pleiades, or Seven Sisters star cluster, across the sky. These possess scientific names as well — Aldebaran is also known as Alpha Tauri.
A young, glittering collection of stars looks like an aerial burst. The cluster is surrounded by clouds of interstellar gas and dust—the raw material for new star formation. The nebula, located 20,000 light-years away in the constellation Carina, contains

A star develops from a giant, slowly rotating cloud that is made up entirely or almost entirely of hydrogen and helium. Due to its own gravitational pull, the cloud behind to collapse inward, and as it shrinks, it spins more and more quickly, with the outer parts becoming a disk while the innermost parts become a roughly spherical clump. This collapsing material grows hotter and denser, forming a ball-shaped protostar. When the heat and pressure in the protostar reaches about 1.8 degrees F (1 million degrees C), atomic nuclei that normally repel each other start fusing together, and the star ignites. Nuclear fusion converts a small amount of the mass of these atoms into extraordinary amounts of energy — for instance, 1 gram of mass converted entirely to energy would be equal to an explosion of roughly 22,000 tons of TNT.
The life cycles of stars follow patterns based mostly on their initial mass. These include intermediate-mass stars such as the sun, with half to eight times the mass of the sun, high-mass stars that are more than eight solar masses, and low-mass stars a tenth to half a solar mass in size. The greater a star's mass, the shorter its lifespan generally is. Objects smaller than a tenth of a solar mass do not have enough gravitational pull to ignite nuclear fusion — some might become failed stars known as brown dwarfs.
An intermediate-mass star begins with a cloud that takes about 100,000 years to collapse into a protostar with a surface temperature of about 6,750 degrees F (3,725 degrees C). After hydrogen fusion starts, the result is a T-Tauri star, a variable star that fluctuates in brightness. This star continues to collapse for roughly 10 million years until its expansion due to energy generated by nuclear fusion is balanced by its contraction from gravity, after which point it becomes a main-sequence star that gets all its energy from hydrogen fusion in its core.
The greater the mass of such a star, the more quickly it will use its hydrogen fuel and the shorter it stays on the main sequence. After all the hydrogen in the core is fused into helium, the star changes rapidly — without nuclear radiation to resist it, gravity immediately crushes matter down into the star's core, quickly heating the star. This causes the star's outer layers to expand enormously and to cool and glow red as they do so, rendering the star a red giant. Helium starts fusing together in the core, and once the helium is gone, the core contracts and becomes hotter, once more expanding the star but making it bluer and brighter than before, blowing away its outermost layers. After the expanding shells of gas fade, the remaining core is left, a white dwarf that consists mostly of carbon and oxygen with an initial temperature of roughly 180,000 degrees F (100,000 degrees C). Since white dwarves have no fuel left for fusion, they grow cooler and cooler over billions of years to become black dwarves too faint to detect. (Our sun should leave the main sequence in about 5 billion years.)
A high-mass star forms and dies quickly. These stars form from protostars in just 10,000 to 100,000 years. While on the main sequence, they are hot and blue, some 1,000 to 1 million times as luminous as the sun and are roughly 10 times wider. When they leave the main sequence, they become a bright red supergiant, and eventually become hot enough to fuse carbon into heavier elements. After some 10,000 years of such fusion, the result is an iron core roughly 3,800 miles wide (6,000 km), and since any more fusion would consume energy instead of liberating it, the star is doomed, as its nuclear radiation can no longer resist the force of gravity.
When the iron core of such a star reaches a mass of 1.4 solar masses, the result is a supernova. Gravity causes the core to collapse, making the core temperature rise to nearly 18 billion degrees F (10 billion degrees C), breaking the iron down into neutrons and neutrinos. In about one second, the core shrinks to about six miles (10 km) wide and rebounds just like a rubber ball that has been squeezed, sending a shock wave through the star that causes fusion to occur in the outlying layers. The star then explodes in a so-called Type II supernova. If the remaining stellar core was less than roughly three solar masses large, it becomes a neutron star made up nearly entirely of neutrons, and rotating neutron stars that beam out detectable radio pulses are known as pulsars. If the stellar core was larger than about three solar masses, no known force can support it against its own gravitational pull, and it collapses to form a black hole.
A low-mass star uses hydrogen fuel so sluggishly that they can shine as main-sequence stars for 100 billion to 1 trillion years — since the universe is only about 13.7 billion years old, this means no low-mass star has ever died. Still, astronomers calculate these stars, known as red dwarfs, will never fuse anything but hydrogen, which means they will never become red giants. Instead, they should eventually just cool to become white dwarfs and then black dwarves.
Binary stars and other multiples
Although our solar system only has one star, most stars like our sun are not solitary, but are binaries where two stars orbit each other a pair, or multiples involving even more stars. In fact, just one-third of stars like our sun are single, while two-thirds are multiples — for instance, the closest neighbor to our solar system, Proxima Centauri, is part of a multiple system that also includes Alpha Centauri A and Alpha Centauri B. Still, class G stars like our sun only make up some 7 percent of all stars we see — when it comes to systems in general, about 30 percent in our galaxy are multiple, while the rest are single.
Binary stars develop when two protostars form near each other. One member of this pair can influence its companion if they are close enough together, stripping away matter in a process called mass transfer. If one of the members is a giant star that leaves behind a neutron star or a black hole, an X-ray binary can form, where matter pulled from the stellar remnant's companion can get extremely hot and emit X-rays. If a binary includes a white dwarf, gas pulled from a companion onto the white dwarf's surface can fuse violently in a flash called a nova. At times, enough gas builds up for the dwarf to collapse, leading its carbon to fuse nearly instantly and the dwarf to explode in a Type I supernova, which can outshine a galaxy for a few months.
  • Brightness
Astronomers describe star brightness in terms of magnitude and luminosity.
The magnitude of a star is based on a scale more than 2,000 years old, devised by Greek astronomer Hipparchus in about 125 BC. He numbered groups of stars based on their brightness as seen from Earth — the brightest ones were called first magnitude stars, the next brightest were second magnitude, and so on up to sixth magnitude, the faintest visible ones. Nowadays astronomers refer to a star's brightness as viewed from Earth as its apparent magnitude, but since the distance between Earth and the star can affect the light one sees from it, they now also describe the actual brightness of a star using the term absolute magnitude, which is defined by what its apparent magnitude would be if it were 10 parsecs or 32.6 light years from Earth. The magnitude scale now runs to more than six and less than one, even descending into negative numbers — the brightest star in the night sky is Sirius, with an apparent magnitude of -1.46.
Luminosity is the power of a star — the rate at which it emits energy. Although power is generally measured in watts — for instance, the sun's luminosity is 400 trillion trillion watts— the luminosity of a star is usually measured in terms of the luminosity of the sun. For example, Alpha Centauri A is about 1.3 times as luminous as the sun. To figure out luminosity from absolute magnitude, one must calculate that a difference of five on the absolute magnitude scale is equivalent to a factor of 100 on the luminosity scale — for instance, a star with an absolute magnitude of 1 is 100 times as luminous as a star with an absolute magnitude of 6.
The brightness of a star depends on its surface temperature and size.
  • Color
Stars come in a range of colors, from reddish to yellowish to blue. The color of a star depends on surface temperature.
A star might appear to have a single color, but actually emits a broad spectrum of colors, potentially including everything from radio waves and infrared rays to ultraviolet beams and gamma rays. Different elements or compounds absorb and emit different colors or wavelengths of light, and by studying a star's spectrum, one can divine what its composition might be.
  • Surface temperature
Astronomers measure star temperatures in a unit known as the kelvin, with a temperature of zero K equaling minus 273.15 degrees C, or minus 459.67 degrees F. A dark red star has a surface temperature of about 2,500 K (2,225 degrees C and 4,040 degrees F); a bright red star, about 3,500 K (3,225 degrees C and 5,840 degrees F); the sun and other yellow stars, about 5,500 K (5,225 degrees C and 9,440 degrees F); a blue star, about 10,000 K (9,725 degrees C and 17,540 degrees F) to 50,000 K (49,725 degrees C and 89,540 degrees F).
The surface temperature of a star depends in part on its mass and affects its brightness and color. Specifically, the luminosity of a star is proportional to temperature to the fourth power. For instance, if two stars are the same size but one is twice as hot as the other in kelvin, the former would be 16 times as luminous as the latter.
  • Size
Astronomers generally measure the size of stars in terms of the radius of our sun. For instance, Alpha Centauri A has a radius of 1.05 solar radii (the plural of radius). Stars range in size from neutron stars, which can be only 12 miles (20 kilometers) wide, to supergiants roughly 1,000 times the diameter of the sun.
The size of a star affects its brightness. Specifically, luminosity is proportional to radius squared. For instance, if two stars had the same temperature, if one star was twice as wide as the other one, the former would be four times as bright as the latter.
  • Mass
Astronomers represent the mass of a star in terms of the solar mass, the mass of our sun. For instance, Alpha Centauri A is 1.08 solar masses.
Stars with similar masses might not be similar in size because they have different densities. For instance, Sirius B is roughly the same mass as the sun, but is 90,000 times as dense, and so is only a fiftieth its diameter.
The mass of a star affects surface temperature.
  • Magnetic field
Stars are spinning balls of roiling, electrically charged gas, and thus typically generate magnetic fields. When it comes to the sun, researchers have discovered its magnetic field can become highly concentrated in small areas, creating features ranging from sunspots to spectacular eruptions known as flares and coronal mass ejections. Directly detecting the magnetic fields of other stars, however, can be difficult.
  • Metallicity
The metallicity of a star measures the amount of "metals" it has — that is, any element heavier than helium.
Three generations of stars may exist based on metallicity. Astronomers have not yet discovered any of what should be the oldest generation, Population III stars born in a universe without "metals." When these stars died, they released heavy elements into the cosmos, which Population II stars incorporated relatively small amounts of. When a number of these died, they released more heavy elements, and the youngest Population I stars like our sun contain the largest amounts of heavy elements.
Stars are typically classified by their spectrum in what is known as the Morgan-Keenan or MK system. There are eight spectral classes, each analogous to a range of surface temperatures — from the hottest to the coldest, these are O, B, A, F, G, K, M, and L. Each spectral class also consists of 10 spectral types, ranging from the numeral 0 for the hottest to the numeral 9 for the coldest.
Stars are also classified by their luminosity under the Morgan-Keenan system. The largest and brightest classes of stars have the lowest numbers, given in Roman numerals — Ia is a bright supergiant; Ib, a supergiant; II, a bright giant; III, a giant; IV, a subgiant; and V, a main sequence or dwarf.
A complete MK designation includes both spectral type and luminosity class — for instance, the sun is a G2V.
Stellar Structure
The structure of a star can often be thought of as a series of thin nested shells, somewhat like an onion.
A star during most of its life is a main-sequence star, which consists of a core, radiative and convective zones, a photosphere, a chromosphere and a corona. The core is where all the nuclear fusion takes places to power a star. In the radiative zone, energy from these reactions is transported outward by radiation, like heat from a light bulb, while in the convective zone, energy is transported by the roiling hot gases, like hot air from a hairdryer. Massive stars that are more than several times the mass of the sun are convective in their cores and radiative in their outer layers, while stars comparable to the sun or less in mass are radiative in their cores and convective in their outer layers. Intermediate-mass stars of spectral type A may be radiative throughout.
After those zones comes the part of the star that radiates visible light, the photosphere, which is often referred to as the surface of the star. After that is the chromosphere, a layer that looks reddish because of all the hydrogen found there. Finally, the outermost part of a star's atmosphere is the corona, which if super-hot might be linked with convection in the outer layers.


Reference: Earth’s Moon: Formation, Composition and Orbit

This recent photo of the moon was taken by astronauts on the International Space Station during the Expedition 24 mission mid-2010.
The moon very likely has a very small core just 1 to 2 percent of the moon's mass and roughly 420 miles (680 km) wide. It likely consists mostly of iron, but may also contain large amounts of sulfur and other elements.
Its rocky mantle is about 825 miles (1,330 km) thick and made up of dense rocks rich in iron and magnesium. Magmas in the mantle made their way to the surface in the past and erupted volcanically for more than a billion years — from at least four billion years ago to fewer than three billion years past.
The crust on top averages some 42 miles (70 km) deep. The outermost part of the crust is broken and jumbled due to all the large impacts it has received, a shattered zone that gives way to intact material below a depth of about 6 miles (9.6 km).
  • Surface Composition
The average composition of the lunar surface by weight is roughly 43 percent oxygen, 20 percent silicon, 19 percent magnesium, 10 percent iron, 3 percent calcium, 3 percent aluminum, 0.42 percent chromium, 0.18 percent titanium and 0.12 percent manganese.
Orbital Characteristics of Earth's Moon
Average Distance from Earth
English: 238,855 miles
Metric: 384,400 km 
Perigee (closest)
English: 225,700 miles
Metric: 363,300 km
Apogee (farthest)
English: 252,000 miles
Metric: 405,500 km
(Source: NASA.)
Orbit/Earth Relationship
  • Tidal Effects
The moon's gravity pulls at the Earth, causing predictable rises and falls in sea levels known as tides. To a much smaller extent, tides also occur in lakes, the atmosphere, and within the Earth's crust.
High tides are when water bulges upward, and low tides are when water drops down. High tide results on the side of the Earth nearest the moon due to gravity, and it also happens on the side farthest from the moon due to the inertia of water. Low tides occur between these two humps.
The pull of the moon is also slowing the Earth's rotation, an effect known as tidal braking that increases the length of our day by 2.3 milliseconds per century. The energy that Earth loses is picked up by the moon, increasing its distance from the Earth, which means the moon gets farther away by 3.8 centimeters annually.
The moon's gravitational pull might have been key to making Earth a livable planet by moderating the degree of wobble in Earth's axial tilt, which led to a relatively stable climate over billions of years where life could flourish.
  • Eclipses
During eclipses, the moon, Earth and sun are in a straight line, or nearly so. A lunar eclipse takes place when Earth gets directly or almost directly between the sun and the moon, and Earth's shadow falls on the moon. A lunar eclipse can occur only during a full moon. A solar eclipse occurs when the moon gets directly or nearly directly between the sun and Earth, and the moon's shadow falls on us. A solar eclipse can occur only during a new moon.
  • Seasons
The Earth's axis of rotation is tilted in relation to the ecliptic plane, an imaginary surface through Earth's orbit around the sun. This means the northern and southern hemispheres will sometimes point toward or away from the sun depending on the time of year, varying the amount of light they receive and causing the seasons.
The tilt of Earth's axis is about 23.5 degrees, but the tilt of the moon's axis is only about 1.5 degrees. As such, the moon virtually has no seasons. This means that some areas are always lit by sunlight, and other places are perpetually draped in shadow.
Exploration & Research
The moon, the brightest object in the night sky, has created a rhythm that has guided humanity for millennia — for instance, calendar months are roughly equal to the time it takes to go from one full moon to the next. Some ancient peoples believed the moon was a bowl of fire, while others thought it was a mirror that reflected Earth's lands and seas, but ancient Greek philosophers knew the moon was a sphere orbiting the Earth whose moonlight reflected sunlight. The Greeks also believed the dark areas of the moon were seas while the bright regions were land, which influenced the current names for those places — "maria" and "terrae," which is Latin for seas and land, respectively.
The legendary scientist Galileo was the first to use a telescope to make scientific observations of the moon, describing a rough, mountainous surface in 1609 that was quite different from the popular beliefs of his day that the moon was smooth. In 1959, the Soviet Union sent the first spacecraft to impact the moon's surface and returned the first photographs of its far side. In 1969, the United States landed the first astronauts on the moon, undoubtedly the most famous of NASA's achievements, and their efforts returned 842 pounds (382 kg) of rocks and soil to Earth for study. It remains the only extraterrestrial body that humanity has ever visited.
After a long interlude, lunar exploration resumed in the 1990s with the U.S. robotic missions Clementine and Lunar Prospector. Both missions suggested water might be present at the lunar poles, hints the joint launch of the Lunar Reconnaissance Orbiter and the Lunar Crater Observation and Sensing Satellite (LCROSS) helped prove were real in 2009.


New Image Is Worth 1,235 Potential Alien Planets

This illustration shows all 1,235 of the potential alien planet candidates NASA
A photo may be worth 1,000 words, but a new depiction of NASA's Kepler mission is worth 1,235 potential alien planets. Created by a devoted mission scientist, the image takes stock of the Kepler observatory's prolific planet-hunting results so far.
The illustration shows all of Kepler's candidate planets — which await confirmation by follow-up observations — crossing the face of their host stars. This provides scale, and it's also a nod to Kepler's planet-hunting strategy: The spacecraft detects alien worlds by measuring the telltale dips in a star's brightness that occur during these planetary "transits." [See the alien planet graphic]
The graphic is the brainchild of scientist Jason Rowe, who created it in an attempt convey Kepler's exoplanet discoveries to the masses in a clear, concise manner.

New Photos of Mercury From NASA's Messenger Probe


Article: 'Brand-New' Moon Shines in NASA's Best Lunar Map Yet

LOLA data from NASA

Scientists have pieced together the most accurate and detailed map of the entire moon in history, using photos snapped by NASA's Lunar Reconnaissance Orbiter (LRO).
The global lunar map — which was unveiled in March with the latest  — is a mosaic stitched together from thousands of pictures taken by the Lunar Reconnaissance Orbiter Camera (LROC). The map provides an unprecedented look at the moon from pole to pole, and should be a valuable resource for future lunar research and exploration plans, scientists said.
"It's a brand-new look at the moon," said LROC principal investigator Mark Robinson, of Arizona State University. "It will serve the scientific community for a long time to come.

Selasa, 05 April 2011

Ikaros, Pesawat Luar Angkasa Bertenaga Surya

Ikaros, Pesawat Luar Angkasa Bertenaga Surya. Jepang memang sudah terbukti menjadi negara yang mempunyai perkembangan tehnologi yang luar biasa. Bagaimana tidak sebentar lagi jepang akan meluncurkan kendaraan baru, sebuah pesawat luar angkasa dan hebatnya pesawat ini berbahan bakar tenaga surya atau menggunakan partikel sinar matahari.
Interplanetary Kite-craft Accelerated by Radiation of the Sun atau Ikaros, demikian nama kendaraan tersebut, dijadwalkan akan diterbangkan menggunakan roket dari pusat peluncuran pesawat luar angkasa Tanegashima di Jepang Selatan pada 18 Mei. Menurut Yuichi Tsuda (ahli sisitem luar angkasa Japan Aerospace Exploration Agency (JAXA) Ikaros merupakan “kapal pesiar” yang mendapatkan tenaga dari tekanan partikel matahari yang memantulkan layarnya.
ikaros pesawat luar angkasa jepang
Layar Ikaros yang fleksibel dan lebih tipis dari rambut manusia dilengkapi juga dengan lapisan film tipis sel surya yang menghasilkan listrik untuk menciptakan teknologi listrik dan tekanan hibrida.
“Layar matahari merupakan teknologi yang merealisasikan perjalanan luar angkasa tanpa bahan bakar, selama masih ada tenaga matahari. Ketersediaan listrik memungkinkan kita untuk ‘berlayar’ lebih jauh dan efektif dalam sistem surya,” terang Tsuda.
Ikaros yang menelan dana pengembangan hingga 1,5 miliar yen, akan menjadi yang pertama menggunakan teknologi di luar angkasa. Sebelumnya, eskperimen ini terganjal oleh bentuk layarnya yang tidak dapat dilipat saat memasuki orbit di sekitar Bumi.
Wowowoww sungguh luar biasa bukan? bagaimana tidak jika misi ini sukses orang awam bisa berekreasi ke luar angkasa, jadi bukan hanya astronot saja yang punya kesempatan. Mau? 
Kalau jepang sudah mampu menciptakan layang-layang seperti ikaros yang mampu terbang dengan “solar sails”, mungkin kita masih mampu menciptakan layang-layang yang bisa terbang dengan benang saja  tapi saya yakin suatu saat nanti indonesia pasti mampu. Yakin!!! so pasti
Oh ya berita terbaru tentang tehnologi, dalam hal ini hp bisa juga disimak tentang yang baru dirilis atau kalau sekedar hiburan ada juga tuh bagaimana julia roberts menjadi  versi majalah people.
Terakhir kita hanya bisa berharap mudah-mudahan misi jepang untuk menjadikan ikaros, pesawat luar angkasa bertenaga surya ini berhasil, sehingga kelak anak cucu kita juga bisa menikmati.

Mobil dari Luar Angkasa

Salah satu perusahaan mobil asal Florida, Car Factory mencoba mengubah mobil asal Amerika Serikat, Chevrolet Aveo menjadi lebih terlihat unik. Konsepnya berubah secara frontal.

Mobil yang tadinya terdapat 4 pintu kini menjadi 2 pintu yang mengadopsi sistem gullwing.

Seperti dilansir Autoevolution, Kamis (23/12/2010) seorang punggawa bernama Mike Vetter dan beberapa kru yang mengubah mobil tersebut menjadi tampak beda dari mobil lainnya.

Mereka menanam bodi baru yang futuristik sementara bodi lama dilucuti tak
tersisa. Di dalam kabinnya hanya terdapat 2 kursi. Di bagian pintu terdapat 2
kaca terdiri dari persegi dan bulat. Mike menyebutnya mobil ini Extra
Terrestrial Vehicle atau EVT.

Ubahan lainya dilakukan pada mesin yang tadinya di depan kini pindah ke bagian buritan yang tak kalah futuristik. Dan untuk ruang depan digunakan sebagai tempat koper untuk Anda yang berencana pergi ke 'luar angkasa'.

Nah, jika Anda berminat pada ide Mike bisa mewujudkan keinganan Anda. Soalnya
selain Chevy Aveo Mike juga mengubah mobil Porsche Boxster, asalkan Anda rela
mengeluarkan dana hingga Rp 787 juta untuk mengubah mobil Anda.

Namun sepertinya wajar jika Anda mengeluarkan dan tersebut jika memiliki
angan-angan pergi ke luar angkasa.

Boeing Desain Kendaraan Ruang Angkasa Pribadi

Boeing dilaporkan sedang mendesain kapsul ruang angkasa yang akan mentransportasikan penumpang antara satu international space station dengan lainnya, ataupun stasiun ruang angkasa lainnya di masa depan.

Kapsul ruang angkasa baru ini merupakan kolaborasi antara beberapa perusahaan di Amerika Serikat yang ingin mengembangkan pesawat ruang angkasa pribadi yang bisa mengantarkan manusia ke ruang angkasa.

Pesawat ini, yang diberi nama Crew Space Transportation-100 (CST-100) dapat direalisasikan berkat dana hadiah sebesar US$18 juta dari NASA di bawah Commercial Crew Development (CCDEv) Space Act Agreement.

Hadiah ini ditujukan untuk menstimulasi inovasi teknologi guna mengembangkan sistem transportasi penerbangan ruang angkasa komersial.

CST-100 yang didesain Boeing bisa membawa 7 orang, lebih besar dibandingkan pesawat ruang angkasa Apollo, meski lebih kecil dibandingkan Orion.

Boeing tidak hanya akan menunggu NASA untuk menjadi klien mereka. Saat ini, seperti dikutip dari Softpedia, Rabu 21 Juli 2010, mereka telah bekerja sama dengan Bigelow Aerospace asal Las Vegas yang merupakan anggota Commercial Spaceflight Federation.
Harapannya, Boeing dapat menyediakan alat transportasi dari dan ke Bigelow Aerospace Orbital Space Complex.

Juru bicara Boeing menyebutkan, mereka akan bekerja sama dengan Bigelow Aerospace karena perusahaan tersebut memiliki banyak pengalaman dalam membangun stasiun ruang angkasa komersial.

Sebagai informasi, Bigelow telah meluncurkan dua prototipe modul stasiun ke ruang angkasa dan saat ini sedang mengembangkan tempat tinggal pribadi yang bisa dibuka-tutup, dan mempersiapkan peluncuran stasiun ruang angkasa pribadi pada 2014

The Space Colony, apa ini tempat hidup kita dimasa depan?
Apa itu Koloni Luar Angkasa? Kolonisasi Luar Angkasa (juga disebut penataan ruang, humanisasi ruang, atau mukim ruang) adalah konsep habitat manusia permanen di luar Bumi. Meskipun hipotetis saat ini, ada banyak usulan dan spekulasi tentang koloni ruang pertama. Hal ini dilihat sebagai tujuan jangka panjang dari beberapa program ruang nasional.

Koloni ruang pertama mungkin di Bulan, atau di Mars. Jumlah oknum semua bahan yang diperlukan, seperti energi matahari dan air, berada di Bulan, Mars, atau asteroid dekat Bumi
Ilmuwan terkemuka pun mengatakan inilah cara untuk manusia agar bisa bertahan hidup di masa depan gan, ini dia Michael GriffinPada tahun 2005 NASA Administrator Michael Griffin diidentifikasi kolonisasi ruang sebagai tujuan akhir dari program spaceflight saat ini, mengatakan:

tujuannya tidak hanya eksplorasi ilmiah ... itu juga tentang memperluas jangkauan keluar habitat manusia dari bumi ke tata surya seperti yang kita maju dalam waktu ... Dalam jangka panjang spesies tunggal-planet tidak akan bertahan hidup ... Jika kita manusia ingin bertahan hidup selama ratusan ribu atau jutaan tahun, kita akhirnya harus mengisi planet lain. Sekarang, hari ini teknologi ini seperti bahwa ini adalah hampir tidak mungkin. Kami berada di masa kanak-kanak itu. ... Aku sedang berbicara tentang bahwa suatu hari, saya tidak tahu kapan hari itu, tapi akan ada lebih manusia yang hidup dari bumi daripada di atasnya. Kita mungkin memiliki orang-orang yang tinggal di bulan. Kita mungkin memiliki orang-orang yang hidup di bulan Jupiter dan planet lain. Kita mungkin memiliki orang-orang membuat habitat di asteroid ... Saya tahu bahwa manusia akan menjajah tata surya dan satu hari melampaui 
Bangunan koloni di ruang angkasa akan membutuhkan akses terhadap air, makanan, ruang, orang, bahan bangunan, energi, transportasi, komunikasi, dukungan kehidupan, gravitasi simulasi, dan proteksi radiasi. Hal ini kemungkinan koloni akan dapat ditempatkan oleh kedekatan dengan sumber daya tersebut. Praktek arsitektur ruang berusaha untuk mengubah spaceflight dari tes heroik daya tahan manusia untuk normalitas di dalam batas-batas pengalaman nyaman.  
Koloni di Bulan, Mars, atau asteroid bisa mengekstrak bahan-bahan lokal. Bulan ini kekurangan volatil seperti argon, helium, dan senyawa karbon, hidrogen dan nitrogen. The impacter LCROSS ditargetkan di kawah Cabeus yang dipilih karena memiliki konsentrasi tinggi air untuk bulan. Segumpal bahan meletus di mana air telah terdeteksi. Anthony Colaprete memperkirakan bahwa kawah Cabeus berisi materi dengan air 1% atau mungkin lebih. Es-Air juga harus di kawah permanen gelap lainnya di dekat kutub bulan.. Meskipun helium hadir hanya dalam konsentrasi rendah di bulan, di mana ia disetorkan ke regolith oleh angin matahari, diperkirakan sebanyak satu juta ton he3 ada atas semua. Ia juga memiliki industri oksigen signifikan, silikon, dan logam seperti besi, aluminium, dan titanium. Peluncuran bahan dari Bumi mahal, sehingga bahan bisa datang dari Bulan, sebuah Near-Earth Object (NEO-sebuah asteroid atau komet dengan orbit dekat Bumi), Phobos, atau Deimos, dimana gaya gravitasi jauh lebih kecil, tidak ada suasana, dan tidak ada kerusakan biosfer. Banyak Neos mengandung sejumlah besar logam, oksigen, hidrogen, dan karbon. Neos tertentu mungkin mengandung nitrogen. 
Energi matahari di orbit berlimpah, handal, dan umumnya digunakan untuk satelit daya hari ini. Tidak ada malam di ruang bebas, dan tidak ada awan atau suasana untuk memblokir sinar matahari. Energi surya tersedia di setiap jarak, d, dari matahari dapat dihitung dengan rumus E = 1367 / d ² watt per meter persegi, di mana d diukur dalam satuan astronomi.

Khususnya dalam kondisi ringan ruang, sinar matahari dapat digunakan secara langsung, menggunakan oven surya besar yang terbuat dari foil logam ringan sehingga dapat menghasilkan ribuan derajat panas; atau tercermin ke tanaman untuk memungkinkan fotosintesis untuk melanjutkan.

struktur besar akan diperlukan untuk mengkonversi sinar matahari menjadi sejumlah besar tenaga listrik untuk penggunaan pemukim '. Di negara-negara yang sangat listrik di Bumi, konsumsi listrik dapat rata-rata 1 kilowatt / orang (atau sekitar 10 megawatt-jam per orang per tahun.)

Energi dapat diekstrak untuk permukiman ruang, mungkin menggunakan transmisi daya nirkabel misalnya melalui microwave balok untuk mengirim listrik ke Bumi atau Bulan. Metode ini memiliki emisi nol, sehingga akan memberi manfaat yang signifikan seperti penghapusan gas rumah kaca dan limbah nuklir. Ground daerah yang dibutuhkan per watt akan kurang dari panel surya konvensional.

Termal, Nuklir Matahari dan listrik di lingkungan pengap, seperti Bulan dan ruang, dan tingkat yang lebih rendah atmosfer Mars sangat tipis, salah satu kesulitan utama adalah penyebaran panas yang dihasilkan tak terelakkan. Hal ini memerlukan daerah radiator cukup besar.
Transportasi ke orbit seringkali merupakan faktor pembatas dalam upaya ruang. Untuk menyelesaikan ruang, kendaraan peluncur jauh lebih murah yang diperlukan, serta cara untuk menghindari kerusakan serius ke atmosfer dari ribuan, mungkin jutaan, peluncuran diperlukan. Salah satu kemungkinan adalah spaceplane hipersonik bernapas sedang dikembangkan oleh NASA dan organisasi lainnya, baik negeri maupun swasta. Ada juga diusulkan proyek-proyek seperti membangun sebuah ruang lift atau sopir massa, atau loop peluncuran.

Transportasi jumlah besar bahan dari asteroid Bumi Bulan, Phobos, Deimos, dan Dekat ke situs pembangunan pemukiman orbital mungkin akan diperlukan.

Transportasi menggunakan sumber daya off-Earth untuk propelan dalam roket konvensional akan diharapkan untuk mengurangi secara besar-besaran di bidang transportasi-ruang biaya dibandingkan hari ini. Propelan diluncurkan dari Bumi mungkin mahal untuk kolonisasi ruang, bahkan dengan biaya akses ruang ditingkatkan.

Teknologi lain seperti propulsi menambatkan, VASIMR, ion drive, roket panas matahari, layar matahari, layar magnetik, dan propulsi termal nuklir semua bisa berpotensi membantu memecahkan masalah biaya transportasi yang tinggi sekali di ruang angkasa. 
Dalam ruang permukiman, sistem ekologi tertutup harus mendaur ulang atau impor semua nutrisi tanpa "menabrak." The analog terestrial terdekat untuk mendukung ruang hidup adalah mungkin bahwa dari kapal selam nuklir. kapal selam nuklir menggunakan sistem pendukung kehidupan mekanik untuk mendukung manusia selama berbulan-bulan tanpa permukaan, dan teknologi dasar yang sama kiranya dapat digunakan untuk menggunakan ruang. Namun, kapal selam nuklir jalankan "loop terbuka"-extracting oksigen dari air laut, dan biasanya dumping karbon dioksida ke laut, meskipun mereka daur ulang yang ada oksigen. Daur ulang karbon dioksida telah didekati dalam literatur menggunakan proses Sabatier atau reaksi Bosch.

Biosfer 2 proyek di Arizona telah menunjukkan bahwa, kompleks kecil, tertutup, biosfer buatan manusia dapat mendukung delapan orang selama setidaknya satu tahun, meskipun ada banyak masalah. Satu tahun atau lebih ke dalam oksigen misi dua tahun harus diisi ulang, yang sangat menunjukkan bahwa mereka dapat mencapai penutupan atmosfer.

Hubungan antara organisme, habitat mereka dan lingkungan non-Bumi dapat:

* Organisme dan habitat mereka diisolasi penuh dari lingkungan (contoh termasuk biosfer buatan, biosfer 2, sistem pendukung kehidupan)
* Mengubah lingkungan untuk menjadi habitat hidup-ramah, proses yang disebut terraforming.
* Mengubah organisme agar menjadi lebih kompatibel dengan lingkungan, (Lihat rekayasa genetika, transhumanism, cyborg)

Sebuah kombinasi dari teknologi diatas juga mungkin terjadi.

97-99% dari energi cahaya yang diberikan kepada pabrik berakhir sebagai panas dan perlu diredam entah bagaimana caranya untuk menghindari overheating habitat.  
Rekayasa Space Colony itu? Ni Penampakan Luar & Dalamnya

Al-Quran Berbicara Tentang UFO

Di dunia masa kini, ada dua macam kendaraan yang pada umumnya dipakai manusia dalam sejarah hidupnya, yaitu yang memakai tenaga tolak untuk maju contohnya hewan, mobil, kapal laut atau kapal udara.

Yang lainnya memakai gaya centrifugal (melanting [dari titik tolak] ) seperti pesawat UFO yang populer disebut “piring terbang”. Kedua macam kendaraan ini oleh Al-Quran surat An-Nahl ayat 8 disebutkan sebagai benda terapung dan ternak. Yang dimaksud dengan ternak yaitu kuda, unta, keledai, dls. Dan benda terapung maksudnya yaitu segala macam kendaraan yang diwujudkan oleh teknologi manusia termasuk di dalamnya “piring terbang”.

Khusus mengenai “piring terbang”, oleh surat An-Nahl ayat 8 adalah kendaraan yang tidak diketahui manusia dalam waktu ribuan tahun dan oleh surat Az-Zukhruf ayat 12 menyebutkan bahwa Allah SWT menciptakan semua yang berpasangan-pasangan. Maksudnya, ada bagian positif dan bagian negatif dari “piring terbang” itu (positif dan negatif=pasangan). Karena surat Az-Zukhruf ayat 12 ini membicarakan tentang alat transportasi maka tentunya istilah “berpasangan-pasangan” itu adalah kendaraan. Dan kendaraan itu tak lain mungkin adalah “piring terbang” yang memiliki bagian positif dan bagian negatifnya.

Dan (Dia Telah menciptakan) kuda, bagal* dan keledai, agar kamu menungganginya dan (menjadikannya) perhiasan. dan Allah menciptakan apa yang kamu tidak mengetahuinya.
(Surat An-Nahl ayat 8 )

* Bagal adalah peranakan kuda dengan keledai.

Ayat ini menerangkan soal kendaraan yang biasa dan bisa dipakai oleh manusia. Manusia biasa menggunakan kendaraan ternak. Kuda dan keledai merupakan tenaga pembawa dan penarik maka keadaannya sama dengan mobil dan kapal terbang selaku pembawa dan penarik. Penggalan kata “bisa” pada paragraf ini, merupakan sesuatu yang belum diketahui manusia tentang kendaraan.

Baik kuda dan keledai maupun mobil dan kapal terbang sama-sama menggunakan tenaga tolak ke belakang untuk maju ke depan, pada dasarnya kedua macam kendaraan itu memiliki prinsip yang sama. Lalu kendaraan apa yang belum diketahui manusia seperti yang disebutkan pada surat An-Nahl ayat 8 itu?

Hal ini dijawab sendiri oleh Al-Quran :

Dan yang menciptakan semua yang berpasang-pasangan dan menjadikan untukmu kapal dan binatang ternak yang kamu tunggangi.

Supaya kamu duduk di atas punggungnya, kemudian kamu ingat nikmat Tuhanmu apabila kamu telah duduk di atasnya; dan agar kamu mengucapkan: “Maha Suci Tuhan yang Telah menundukkan semua ini bagi kami padahal kami sebelumnya tidak mampu menguasainya”.

Dan Sesungguhnya kami akan kembali kepada Tuhan kami.
(Surat Az-Zukhruf ayat 12 - 14)

Kalau anda membaca susunan ayat Al-Quran ini sepintas mungkin anda tidak merasa mendapatkan sesuatu yang aneh dan baru. Akan tetapi, patut diketahui bahwa tidak ada satu pun ayat suci Al-Quran yang diwahyukan oleh Allah SWT kepada Rasul-Nya yang percuma atau tidak memiliki makna. Kalau anda teliti dan merenungkannya dalam-dalam, semua ayat-ayat yang terkandung dalam Al-Quran itu selalu memiliki unsur-unsur keterkaitan antar ayatnya, baik kaitan ayat yang ada di dalam surat itu sendiri atau kaitan ayat pada surat-surat Al-Quran yang lain. Sederhananya, keterkaitan satu ayat dengan ayat yang lainnya seperti dunia internet yang sedang anda jelajahi ini. Suatu halaman web yang berisi informasi selalu memiliki kaitan atau link, baik link yang menuju ke halaman web itu sendiri ataupun link yang menuju ke halaman web yang lainnya.

Nah, semua unsur-unsur yang saling berkaitan itu tak jarang selalu menghasilkan pemahaman ilmiah yang dapat diterima oleh akal sehat. Dengan begitu, memahami susunan ayat-ayat di atas ini maka “benda terapung” ini adalah suatu kendaraan yang belum diketahui oleh manusia.

Seperti yang disebutkan pada surat An-Nahl ayat 8.

Susunan ayat-ayat diatas nantilah kita analisis belakangan.

Sekarang kita masuki persoalan yang nantinya jadi bahan dalam penganalisaan itu.

Al-Quran sering sekali menjelaskan persoalan rotasi dan orbit benda-benda angkasa. Hal itu merupakan gambaran bagi setiap orang agar selalu memperhatikan kenapa Bumi ini berputar pada porosnya, kenapa planet ini bersama planet-planet yang lainnya beredar mengelilingi matahari yang juga berputar di porosnya. Semua planet itu tidak bertiang, tidak bertali dan juga tidak memiliki tempat bergantung. Semuanya bergerak dalam keadaan bebas terapung. Hanya Rawasialah yang memutar planet itu di sumbunya sambil berputar-putar mengelilingi matahari. Sungguh Rawasia itu adalah wujud penting dari sesuatu yang harus diteliti lebih dalam lagi oleh para astronom. Dengan mengetahui keadaan Rawasia setiap planet, maka tabir misteri alam semesta yang tak terbatas itu akan terkuak.

Bumi yang beratnya sekitar 700 triliun ton tidak jatuh pada matahari karena gaya lantingnya (centrifugal) dalam keadaan mengorbit, sebaliknya Bumi juga tidak terlanting jauh keluar dari garis orbitnya sebab ditahan oleh gaya gravitasi pada matahari sebagai pusat orbit. Kekuatan gaya lanting Bumi dan gaya gravitasi adalah sama besarnya, orang ahli menyebutnya dengan Equilibrium. Oleh karena itulah sampai hari ini Bumi yang kita diami terus menerus berputar dan beredar mengelilingi matahari.

Andaikan kalau Bumi hanya memakai gaya lantingnya saja tanpa menggunakan gaya gravitasi. Maka, bisa dipastikan Bumi akan melayang jauh meninggalkan matahari. Dengan begitu, tenaga centrifugal seperti yang dimiliki Bumi dapat diadopsi oleh “piring terbang” untuk terbang jauh jika tenaga gravitasinya dihilangkan.

Nah, akhirnya kita pun sampai pada pertanyaan ini, bagaimana cara menghilangkan gaya gravitasi itu?

Salah satu caranya adalah dengan memutar bagian pesawat secara horisontal. Apabila putaran itu semakin cepat maka semakin besar pula gaya centrifugal yang dihasilkan dan semakin kecillah gaya gravitasinya, sampai akhirnya gaya gravitasi ini akan hilang sama sekali dan mulailah pesawat dapat terangkat dengan mudah tanpa terpengaruh oleh gravitasi Bumi.

Mungkin anda akan bertanya, bagaimana bisa pesawat dapat berputar terus menerus tanpa tumpuan? Dari situlah kita namakan pesawat ini dengan Shuttling System, yaitu pesawat berbentuk piring dempet yang ditengah-tengahnya adalah tempat penumpang.

Anda bisa simak gambar ilustrasi struktur “piring terbang” dibawah ini.

A. Bagian Atas, kita namakan Positif, berputar ke kanan, semakin ke pinggir massanya semakin tebal dan berat.

B. Bagian Bawah, kita namakan Negatif, berputar ke kiri, semakin ke pinggir massanya semakin tebal dan berat.

C. Bagian Tengah, kita namakan Netral, disinilah tempat awak pesawat serta perlengkapan dan mesin yang memutar Positif dan Negatif sekaligus dalam satu kendali.

Praktis pesawat pun akan terangkat dibantu dengan ledakan seperlunya untuk tenaga pembelok dan untuk penambahan kecepatan sewaktu berada di angkasa tanpa bobot.

Bagaimanapun nantinya wujud konstruksi pesawat itu, kita serahkan saja kepada para profesor dan kita yakin nantinya di masa depan akan terwujud sebagai pesawat kebal peluru dan tak memerlukan landasan tertentu karena dia dapat berdiri statis di angkasa dan yang lebih hebat lagi adalah bahwa pesawat itu tentunya water-proof alias anti-air yang kalau pada saat diperlukan dia dapat langsung masuk ke dalam lautan dan keluar lagi sesuai kehendaknya.

Kita boleh mengatakan bahwa kendaraan manusia kini sudah kolot, kuno atau usang karena sistem yang dipakainya sudah berlaku selama ribuan tahun, yang semuanya itu memakai prinsip menolak ke belakang untuk maju ke depan dan menolak ke bawah untuk naik ke atas. Setelah manusia sanggup memakai gaya centrifugal berbentuk “piring terbang” barulah manusia akan memulai kendaraan modern.

Jadi, masa terwujudnya “piring terbang” adalah batas antara ke-kuno-an dan kemodernan peradaban manusia. Batas ini disebut oleh Al-Quran dalam surat Az-Zukhruf ayat 13 diatas dengan bahasa kiasan, bahwa profesor yang mulai menggunakan “piring terbang” mengatakan; Waktu itu manusia baru memulai hidup dalam generasi lain yaitu generasi pesawat itu tidaklah segenerasi dengan modern.

Dalam peradaban modern dimana manusia umumnya memakai piring terbang sebagai kendaraan, akan banyak sekali perubahan dalam kehidupan baik di bidang jasmaniah maupun di bidang rohaniah. Di bidang jasmaniah akan berlaku perubahan dalam kehidupan seperti, orang-orang tak lagi membutuhkan jalan raya dan rel kereta api yang pembangunannya sangat banyak menghabiskan tenaga, tempat, benda dan waktu. Orang-orang akan memanfaatkan daerah itu untuk tempat tinggal atau untuk kebutuhan lainnya. Orang-orang akan memindahkan perhatiannya terhadap lautan sebagai sumber makanan karena lautan itu memang sangat luas yang mengandung berbagai bahan untuk keperluan hidup, dan daratan sebagian besar akan dijadikan orang untuk tempat bermukim. Orang-orang nantinya akan melakukan penerbangan antar planet secara lazim dimana planet Jupiter, Venus, Saturnus dan planet yang lebih besar lainnya akan menjadi sasaran dalam perekonomian dan politik.

Di bidang rohaniah akan berlaku perubahan dalam kehidupan seperti, orang-orang akan menyadari bahwa alam semesta ini memang diciptakan untuk kebutuhan hidup manusia oleh Allah Yang Maha Esa. Orang-orang akan menyadari bahwa manusia di planet Bumi dalam tata surya ini berasal dari satu diri, satu spesies, atau serumpun. Bukan dari hasil evolusi monyet, seperti teori Darwin yang dikalahkan logika. Orang-orang akan menyadari bahwa agama yang diturunkan oleh Allah SWT itu hanyalah agama Tauhid yang sama sebagaimana yang tercantum dalam surat Al-Imran ayat 83. Orang-orang akan menyadari bahwa agama Tauhid yang diturunkan Sang Khaliq itu mengandung hukum yang sesuai dengan kejadian dan naluri yang terdapat di alam semesta raya dan pada diri manusia sendiri, dan bahwa menolak agama itu berarti merugikan diri sendiri.

Kami akan memperlihatkan kepada mereka tanda-tanda (kekuasaan) kami di segala wilayah bumi dan pada diri mereka sendiri, hingga jelas bagi mereka bahwa Al Quran itu adalah benar. Tiadakah cukup bahwa Sesungguhnya Tuhanmu menjadi saksi atas segala sesuatu?
(Surat Al-Fushshilat ayat 53)

Maka apakah mereka mencari agama yang lain selain dari agama Allah, padahal kepada-Nya-lah menyerahkan diri segala apa yang di planet-planet dan di bumi ini, baik dengan suka maupun terpaksa dan Hanya kepada Allahlah mereka akan kembali.
(Surat Al-Imran ayat 83)

Ini cuma artikel hanya untuk dibaca dan diketahui saja, jangan artikel ini bisa menjadi perpecahan umat menuding aliran agama dan lainya karena bisa dosa.sekali lagi haya untuk pengentahuan saja.


About Me

Foto saya
Orangnya biasa- biasa aja ..